Экспериментальная работа по формированию самоконтроля в процессе обучения математике по системе Эльконина-Давыдова
Наша работа посвящена изучению одного из структурных элементов учебной деятельности- изучению самоконтроля младших школьников. Перед началом проведения исследования мы предположили, что использование специальных заданий может способствовать формированию и развитию самоконтроля. Для подтверждения гипотезы был проведен эксперимент: на уроках математики детям предлагались задания, способствующие развитию самоконтроля. Эксперимент проводился в третьем классе частной школы “Литица”.
Приведем фрагменты некоторых уроков и опишем упражнения, предлагавшиеся детям.
Первый фрагмент урока содержит два задания, способствующих формированию самоконтроля.
Содержание фрагмента урока |
Комментарии |
|||
Задачу, которую я предложу, вам необходимо прослушать особенно внимательно и сказать, можем мы решить ее или нет. “За 4 дня школьники сделали 127 подарков к празднику. Сколько дней им понадобится, чтобы сделать 254 подарка?” (Мы не можем решить эту задачу.) Почему? (В ней говорится о неравномерном процессе. Там сказано, что ученики сделали 127 подарков за 4 дня, это не значит, что и за следующие 4 дня они сделают столько же.) Измените эту задачу, чтобы в ней говорилось о равномерном процессе. (За 4 дня школьники делают 127 подарков. Сколько дней им понадобится, чтобы сделать 254 подарка?) Составьте таблицу и решите задачу. + |
В условии предлагаемой задачи содержится ошибка, в ней описан неравномерный процесс. На это указывает глагол “сделали” в прошедшем времени. Дети должны были, слушая задачу, заметить это. Навык самоконтроля предполагает умение находить и анализировать ошибки не только в своей работе, но и в предлагаемых заданиях, поэтому мы решили, что это упражнение можно использовать для его формирования.
|
|||
|
S(дн.) S(дн.) |
T(шт.) |
|
|
|
4 |
127 |
|
|
|
? |
254 |
|
|
1) 254 :127 = 2 (раза) 2) 4 х 2 = 8 (дней) Ответ: 8 дней понадобится школьникам, чтобы сделать 254 подарка. Теперь поменяйтесь тетрадями и проверьте друг у друга оформление таблицы и решение задачи. Аккуратно карандашом исправьте ошибки, если они есть, и объясните друг другу в чем заключается ошибка и почему то, что написано в тетради- неправильно. |
Поскольку прежде, чем начать контролировать свои действия, необходимо научиться контролировать действия других людей, при формировании навыка самоконтроля мы использовали взаимный контроль. Поменявшись тетрадями, дети стали выступать в роли контролеров. Во-первых, мы считаем, что это повышает ответственность учащихся при проверке работ, а во-вторых, чтобы установить, правильно или нет решена задача у другого ученика, детям было необходимо еще раз установить соответствие составленной таблицы тексту задачи и еще раз прорешать ее. Кроме того, детям было дано задание объяснить найденные ошибки тому, чью работу они проверяли. Это значит, им приходилось не просто механически исправлять то, что было неверно, а обосновывать свое решение. Умение не только видеть ошибки, но и исправлять их и объяснять их причины, является составной частью самоконтроля, поэтому мы включили это задание в наш эксперимент.
|
Кроме того, мы проводили фронтальную работу по формированию навыка самоконтроля. В следующем фрагменте урока мы покажем, как в классе была организована коллективная проверка решения задач.
Содержание фрагмента урока |
Комментарии |
Для выполнения задания дети были объединены в группы. В группах они составляли задачи по таблицам и решали их. Для каждой группы задачи были разные. Разберем, как проходила работа на примере одной из них. Каждая группа составляла задачу и записывала ее решение на доске. |
В этом фрагменте урока навык самоконтроля формируется не в процессе составления и решения задач в группах, а в процессе их коллективной проверки. Дети, которые слушают выступающую группу являются контролерами, а не просто пассивными слушателями. Им нужно не только сказать верно или нет составлена и решена задача, но и обосновать свое мнение. |
При такой форме работы как
S(км) |
Т(час) |
|
коллективная проверка |
300 |
6 |
|
определенная роль принадлежит |
? |
2 |
|
учителю, так как , если дети сами |
400 |
? |
|
ничего не доказывают, учитель |
задает им вопросы, подталкивающие
1) 6 : 2 = 3 (раза) 2) 300 : 3 = 100 (км) 3) 400 : 100 = 4 (раза) 4) 2 х 4 = 8 (часов) Итак, слушаем первую группу, а все остальные будут контролерами. Вам нужно определить правильно ли составлена задача и доказать, что она решается. “Катер проходит 300 км за 6 часов. Сколько километров он пройдет за 2 часа? За сколько часов катер пройдет 400 километров? “ Какого вида этот процесс? (Это процесс движения.) Как вы считаете, правильно группа составила задачу? (Да.) Почему? (В таблице даны характеристики первого процесса: расстояние 300 км и время 6 часов, и в задаче говорится, что катер проходит 300 км за 6 часов...) Докажите, что эту задачу имеет смысл решать. (Это “хороший” процесс, на это указывает глагол “проходит”. Он означает, что за каждые 6 часов катер проходит 300 км.) Объясните решение вашей задачи. (Группа рассказывает, как они решали задачу, поясняя каждое действие.) Как вы считаете, правильно или нет эта группа решала задачу? (Да) А ответ они получили правильный? (Да) Как можно в этом убедиться? (Можно подставить полученные ответы в таблицу, тогда мы увидим, что процесс равномерный, т.е. во сколько раз изменяется одна из его характеристик, во столько же раз изменяется и другая характеристика.) |
к объяснению ответа. Группа, которая выступает у доски, тоже осуществляет контроль, только это контроль за своими действиями, т.е. самоконтроль. Но мы не считаем нужным уделять этому особое внимание, т.к. у них самоконтроль осуществляется неосознанно. Поясняя свое решение задачи, они не просто перечисляют выполненные действия, а объясняют каждое из них, в результате чего дети могут убедиться в их правильности или неправильности. Итак, на этом фрагменте урока мы показали, как осуществляли коллективную проверку решения задач, которая является промежуточным звеном между контролем педагога и самоконтролем учащихся. |
Следует отметить, что системой Д.Б.Эльконина и В.В Давыдова
предусмотрено, что дети должны постоянно объяснять, обосновывать, доказывать свои ответы и действия. К этому их приучают. Начиная с первого класса, что несомненно способствует формированию навыка самоконтроля. Дети с самого начала приучаются следить за правильностью и логичностью действий других, а также критически относиться к своим собственным действиям.
Среди приемов формирования навыка самоконтроля мы описывали прием решения задач разными способами. Мы воспользовались им и при формировании навыка самоконтроля у учеников школы “Литица”. На примере фрагмента одного из уроков покажем, как мы это делали.
Содержание фрагмента урока |
Комментарии |
Детям был предложен для решения № 602(1). “Масса трех пачек чая 150 г. Какова масса 10 таких пачек? 100 пачек?” Решите эту задачу разными способами. Прежде, чем приступить к работе, скажите, как этот процесс называется? (Составление целого из частей.) Назовите характеристики процесса. (S-масса пачек; Т- количество пачек.) Какой это процесс? Почему? (“Хороший”, так как все пачки одинаковые.) |
Во время этого урока мы обратили внимание детей на то, что проверить правильность выполнения задания можно, решив его другим способом. На примере конкретной задачи дети вспомнили, каким образом, решив задачу другим способом, можно узнать, правильно она была решена или нет. Умение находить разные способы решения задач означает овладение одним из приемов самоконтроля. |
1 способ: +
|
S(г) |
Т(пачки) |
|
|
150 |
3 |
|
10 |
? |
10 |
10 |
|
? |
100 |
|
|
1500 |
30 |
|
1)1500 : 3 = 500 (г) 2)500 х 10 = 5000 (г) |
|
2 способ: +
|
S(г) |
Т(пачки) |
|
|
150 |
3 |
|
3 |
? |
10 |
3 |
|
? |
100 |
|
|
50 |
1 |
|
1) 50 х 10 = 500 (г) 2) 50 х 100 = 5000 (г) |
|
3 способ:
? |
|
|
100 |
|
|
? |
3 |
150 |
10 |
|
|
? |
|
|
1) 150 : 3 = 50 (г) 2) 50 х 10 = 500 (г) 3) 50 х 100 = 5000 (г) Ответ: 500г масса 10 пачек чая; 5000г масса 100 пачек чая. (После того, как дети решили задачу, решения были обсуждены и вынесены на доску. Затем была проведена беседа.) Что вы можете сказать о полученных ответах? (Каким бы способом мы не решали задачу, ответы всегда получаются одинаковые.) Какой из этого можно сделать вывод? (Задача решена верно.) Как вы думаете, есть ли нам смысл тратить время и учиться решать задачи разными способами, или достаточно освоить какой- нибудь один способ? (Если мы знаем несколько способов, то можем для решения каждой задачи выбирать более короткий, а еще, решив задачу одним способом, мы можем проверить правильность решения другим способом.) |
|
Составление и решение взаимообратных задач тоже является приемом формирования навыка самоконтроля при обучении математике, и мы использовали его в своем эксперименте. Проиллюстрирует его фрагментом урока.
Содержание фрагмента урока |
Комментарии |
Дети были разделены на группы, и каждой группе была предложена задача. Задание: построить таблицу к задаче и решить ее по формуле прямой пропорциональности. 1) “Дима и Вася собрали 80 кг винограда за полчаса. Сколько им потребуется корзин, если в каждую корзину вмещается по 20 кг винограда?” 2)“Сколько килограммов вмещается в 4 корзины, если в каждую из них вмещается по 20 кг винограда?” Дети оформляют решение на доске. |
Здесь следует обратить внимание на то, как проводилась работа с задачами после обсуждения решения каждой из них отдельно. Самоконтроль мы формировали в процессе сравнения условий задач и их решений, записанных на доске. На уроке мы повторили, что такое взаимообратные задачи, и обратили внимание на необходимость умения составлять и решать такие задачи. Кроме того, детям было предложено самим составить задачу, обратную данной. |
1)
S(кг) |
Т(кор.) |
V(кг/кор.) |
80 |
? |
20 |
Т = S : V 80 : 20 = 4 (корзины) Ответ: 4 корзины потребуется. |
|
2)
S(кг) |
Т(кор.) |
V(кг/кор.) |
? |
4 |
20 |
S = V х Т 20 х 4 = 80 (кг) Ответ: 80 килограммов винограда помещается в 4 корзины. После обсуждения решений детям задается вопрос: “Что можно сказать об этих двух задачах?” (Они взаимообратные.) Почему вы так решили? (В обеих задачах говорится о винограде, который раскладывают в корзины. В обеих задачах в одну корзину помещается 20 кг винограда, но в одной задаче спрашивается, сколько нужно корзин, чтобы разложить 80 кг винограда, а во второй, наоборот, спрашивают, сколько килограммов винограда модно разложить в 4 корзины.) Зачем нам их составлять и решать? (Чтобы проверить, верно мы выполнили решение или нет.) А каким образом мы можем это сделать? (Ответ обратной задачи должен совпадать с данными первой.) Сколько обратных задач можно составить к нашей задаче? (Две.) Почему? (У нее всего три характеристики процесса, а составляя задачи, мы поочередно их делаем неизвестными.) Одна задача у нас есть, составьте еще одну. (“80кг винограда можно разложить в 4 корзины. Сколько килограммов винограда будет в каждой корзине, если его раскладывали поровну?”) Решите ее устно, какой ответ получается? (В каждой корзине будет по 20 кг винограда.) Что означает ответ этой задачи? (Две первые задачи были решены правильно.) |
Мы использовали этот прием, так как составление и решение обратной задачи позволяет быстрее обнаруживать ошибки и выявлять их причины. Если дети научатся и привыкнут работать со взаимообратными задачами, то постепенно они привыкнут контролировать решение прямой задачи, а значит у них будет формироваться навык самоконтроля. |
Иногда можно экспериментально проверить правильно или нет выполнено задание. При изучении темы “Площадь прямоугольника” мы предложили детям упражнение №770 из учебника. Им нужно было найти площадь прямоугольника по формуле S = V xT.
Содержание фрагмента урока |
Комментарии |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<\/a>") //--> |