Описание зачетной системы при изложении темы “Тела вращения”.
Призма описана около цилиндра, если у нее плоскостями оснований являются плоскости оснований цилиндра, а боковые грани касаются цилиндра.
II. Конус
1. Конус
– тело, которое состоит из круга – основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.
Конус получается при вращении прямоугольного треугольника вокруг катета.
2. т. S – вершина конуса
круг(О,ОА) – основание конуса
SA=SB – образующие конуса
Отрезок SO – высота конуса
Прямая SO – ось конуса
3. а) осевое сечение конуса – равнобедренный треугольник
б) сечение конуса плоскостью, проходящей через его вершину – равнобедренный треугольник
в) сечение конуса плоскостью, перпендикулярно оси симметрии – круг
4. а) вписанная пирамида – пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, вершина – вершина конуса, боковые ребра пирамиды – образующие конуса
б) Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса и перпендикулярная плоскости осевого сечения, содержащей эту образующую.
Описанная пирамида – пирамида, у которой основанием служит многоугольник, описанный около основания конуса, вершина – вершина конуса, боковые грани – касательные плоскости конуса.
Шар. Сфера
1. Шар
– тело состоящее из всех точек пространства, находящихся на расстоянии не больше данного от данной точки.
Сфера – граница шара.
Шар получается при вращении полукруга вокруг его диаметра как оси
2. т. О – центр шара
ОА=ОВ – радиус шара
АВ – диаметр
3. а) Всякое сечение шара плоскостью – круг, центром которого является основание перпендикуляра, опущенного из центра шара на секущую плоскость.
б) плоскость, проходящая через центр шара – диаметральная плоскость. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы – большой окружностью.
4. Плоскость проходящая через точку А поверхности шара и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью, точка А – плоскостью касания.
а) многогранник называется вписанным в шар, если все его вершины лежат на поверхности шара.
б) многогранник называется описанным около шара, если все его грани касаются поверхности шара.
IV. Закрепление нового материала.
Для того, чтобы выяснить, как учащиеся усвоили новый материал, им предлагается ответить на следующие вопросы, ответы на которые обсуждаются всем классом:
1. Укажите среди окружающих вас предметов в природе, технике объекты, имеющие формы цилиндра, конуса, шара
2. При вращении каких фигур получаются цилиндр, конус, шар, сфера?
3. При помощи моделей покажите и назовите основные элементы цилиндра, конуса, шара
V. Сообщение домашнего задания.
VI. Подведение итогов урока.
п.2. Различные формы контроля на уроках – практикумах
В этом пункте остановимся, на различных формах контроля, которые применяются на практических занятиях.
Известно, что чертеж является основным средством иллюстрации, развития пространственного воображения.
Для экономии времени на уроке и увеличении объема решаемых задач был разработан шаблон для изображения тел вращения.[16] Этот шаблон предназначен для изображения конуса и цилиндра, где заштрихованные части шаблона (а), (б), (в), (г) вырезаются. Так например, если мы обведем основания (а) и (б) и проведем касательные к ним, то получим изображение цилиндра. Если же обведем одно из оснований (а) или (б), (в), (г) и заштрихуем точку S, из нее проведем касательные к этим окружностям, то получим изображение конуса.
п.2.1. Тема “Цилиндр”
Приведем в этом пункте краткие конспекты уроков по теме “Цилиндр”.