Описание зачетной системы при изложении темы “Тела вращения”.
I. Какие из следующих утверждений верны:
1. Любое сечение цилиндра плоскостью, перпендикулярной оси, есть окружность, равная окружности основания.
2. Любое сечение цилиндра плоскостью, есть окружность, равная окружности основания.
3. Плоскость, перпендикулярная оси цилиндра, пересекает его по кругу, равному основанию цилиндра. Купить газобетонные блоки в Воронеже газоблок авито объявления в Воронеже Купить.
II. Может ли осевое сечение цилиндра быть:
1. прямоугольником
2. квадратом
3. трапецией
III.
1. Какая плоскость называется касательной к цилиндру?
2. Какая призма называется вписанной в цилиндр?
3. Какая призма называется описанной около цилиндра?
III.Практическая работа.
Каждому ученику выдается подставка, штырь и проволока.
Задание: Выгнуть фигуру, при вращении которой получается цилиндр с радиусом равным 10см и образующей равной 15 см.
IV. Решение задач по теме “Сечения цилиндра”, “Вписанная, описанная призма”.
V. Сообщение домашнего задания.
VI.Самостоятельная работа по теме “Сечения цилиндра”, “Основные элементы цилиндра”.
Задачи, предлагаемые в самостоятельной работе, соответствуют обязательному уровню математической подготовки.[18, c.211]
I Вариант
1. Осевое сечение цилиндра – квадрат, диагональ которого равна
20 см. Найдите высоту цилиндра.
2. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра плоскостью параллельной его оси, если расстояние между этой плоскостью и осью цилиндра равно 3 см.
II Вариант
1. Осевое сечение цилиндра – квадрат, диагональ которого равна
20 см. Найдите площадь основания цилиндра.
2. Высота цилиндра равна 12 см, радиус основания равен 10 см.
Цилиндр пересечен плоскостью, паралельной его оси так, что в сечении получился квадрат. Найдите расстояние от оси цилиндра до секущей плоскости.
Все оценки за самостоятельную работу выставляются в журнал.
VI. Подведение итогов урока.
п.2.2. Тема “Конус”
По сравнению с темой “Цилиндр”, по теме “Конус” в учебнике Погорелова имеется большее количество задач. На решение задач по теме “Конус” отводится 3 часа.
а) “Основные элементы, сечения конуса” – 1 час
б) “Сечения конуса. Усеченный конус” – 1 час
в) “Вписанные, описанные пирамиды” – 1 час
Урок 1. Тема “Конус”
Цели урока:
1.Развить пространственное воображение.
2. Закрепить основные понятия по темам “ Основные элементы, сечения конуса ”.
3. Проверить знаний по темам “ Основные элементы конуса ”, “ Сечения конуса ”.
4. Научить учеников применять полученные знания к решению задач.
Ход урока:
I Оргмомент
II Проверка домашнего задания
Домашнее задание было следующим: повторить пункты 1-3 лекции “Тела вращения”, II часть “Конус” (основные элементы, определения, сечения). Перед тем как решать задачи по теме “Конус”, в начале урока проводится самостоятельная работа, все оценки за которую идут в журнал.
1. Завершить предложение:
конус это тело, которое состоит из ………….
2. При вращении какой фигуры получается конус?
3. Сделать чертеж конуса, указать его основные элементы: вершину,
основание, образующие, высоту, ось конуса.
4. Как надо пересечь конус плоскостью, чтобы в сечении получить:
а) равнобедренный треугольник
б) круг
III. Расширение и углубление знаний, умений и навыков учащихся.
Каждому ученику выдается подставка, штырь и проволока, из которой предлагается выгнуть треугольник.
Закрепив его на штыре они вращают его вокруг его стороны. Вращая его так, они получают наглядное представление о конусе.
IV. Решение задач по темам “ Основные элементы конуса ”, “ Сечения конуса ”.
В ходе решения задач ученикам задаются следующие вопросы:
1. Чему равна площадь круга? (Sкр = R)
2. Чему равна площадь треугольника (S = ab sin)
3. Что называется sin, cosв прямоугольном треугольнике?